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Abstract

Fast-scanning uses a single 12 m antenna at the Atacama Large
Millimeter/submillimeter Array (ALMA) to physically scan a region
of interest. This can be used to probe angular resolutions greater than
those achievable with ALMA in its interferometric operation. The data
is converted to brightness temperature, and then the noise present is
analysed. There is a substantial atmospheric component to the noise,
which can be partially removed as part of the map-making process.
Three means of undertaking the removal are investigated and basket
weaving is found to be superior, removing 60% of the noise whilst being
computationally inexpensive.

1 Introduction

Inaugurated in 2013, the Atacama Large Millimeter/submillimeter Array
(ALMA) is an international radio telescope in the Atacama Desert in Chile.1

It consists of an array of 66 antennae, observing at wavelengths of 0.3�10
mm.2 This work deals solely with the 12 m diameter antennae, of which
there are 54.

In normal operation, these are used in an interferometric array, with baselines
of up to 15 km giving a �nest angular resolution of 0.015" at a wavelength
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of 1 mm.4 However, interferometry imposes a maximum angular scale (due
to the Fourier transform of the �nite spacing between the dishes making up
the array), which is of the order of 20" at a wavelength of 1 mm.

Thus, to produce images of large-scale objects, many interferometric obser-
vations of small patches of sky must be built up into a `mosaic' image. An
alternative approach is required to obtain the large-scale structure. In this
paper, the fast-scanning method is used.

Fast-scanning consists of rapidly scanning a single telescope over the region of
interest. The true pointing of the telescope can be measured to a su�cient
accuracy that the angular resolution is limited by the beam width of the
telescope � 17" at a wavelength of 1 mm.4 The area of sky able to be observed
is limited by the need to observe near the zenith to minimise atmospheric
noise and the need for su�cient coverage of that area. Fast-scanning has
been tested for areas of up to 140 square arcminutes.

However, since a single dish is being used, atmospheric and electronic noise
become signi�cant. Reduction of the electronic noise requires long observing
times. By contrast, atmospheric noise, being low frequency, is amenable to
reduction through the use of appropriate algorithms, as described in this
work.

The rest of the report is organised as follows. The observational techniques
are described in section 2. Section 3 gives an explanation of the method used
to convert intensity to temperature data. The characterisation of the noise
present is described in section 4. Then, the methods used to produce maps
and remove noise are explained and evaluated in section 5, before conclusions
are o�ered in section 6.

2 Observational Technique

The antenna gathers signal separately in two orthogonal polarisations (X
and Y). The signal is then �ltered into four bands of 2 GHz, down sampled,
ampli�ed and digitised. This produces a total of eight channels of data,
which should have partially uncorrelated noise. A typical observation lasts
400�500 s.

The optimal observing strategy would be a random sampling across the region
of interest.10 With a real telescope, one is mechanically limited, so a scanning
pattern is required. A good coverage can be obtained using a Lissajous

2



pattern (�gure 1). For a circular area, a `clover-leaf' central scanning pattern
has the advantage of concentrating observational weight at the centre of the
map, which is useful for compact sources.

Figure 1: Two possible patterns for scanning: central and Lissajous

The raw data come in two �les: one contains the pointing data, sampled
at 21 Hz, and the other the signal, sampled at 500 Hz. A pointing must
be assigned to each signal reading. Thus, the �rst step is to interpolate the
pointing data to assign a pointing to each signal reading. This is done using
a cubic spline.

3 Data Conversion

Equation 1 gives the model used for the signal, S, received from a source of
brightness temperature Tobs. G is a constant gain and O a constant o�set.
Tobs, TCMB, Tatm and Tsys are the CMB (2.73 K), atmospheric and systematic
temperatures, respectively.

S = (Tobs + TCMB + Tatm + Tsys)G+O (1)

As seen in �gure 2, six sets of data are taken. Calibration is performed by
observing a patch of 'blank' sky near the source of interest, yielding Sblank =
(TCMB + Tatm + Tsys)G+O. Then, two reference loads are put in front of the
antenna (Sref = (Tsys)G+O), to give the full set of constants to convert the
data to a temperature scale.
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Figure 2: Calibration

3.1 Discussion

The results of this conversion are shown in �gure 3, which is the conversion
of the data given in �gure 2. In this case, Jupiter was being observed. The
peak value for each pass is about 165K, which is consistent with previous
measurements of the brightness temperature of Jupiter.8 The drift in the
`zero' measurement is clear evidence of atmospheric noise.

However, the simple model for the observed signal (equation 1) does not take
into account the optical depth of the atmosphere, which has been previously
measured to have a zenith median value of 0.061 at 230 GHz.1 This will have
the e�ect of underestimating the true sky temperature. However, the optical
depth is highly variable, having 25% and 75% points in the distribution of
0.036 and 0.115. Ideally, one would want to measure the optical depth at the
time of the observation, or produce a modelled value based on atmospheric
observables.
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Figure 3: Data from a scan pattern of Jupiter converted to source brightness
temperature. The peak heights are 165 K.

4 Noise Characterisation

Figure 4 gives the power spectrum of a channel of data produced by pointing
the antenna at Mars. Being static, the data lacks the harmonics of a scan
pattern, but is otherwise representative of all the data. It can be seen that
there are two primary types of noise: atmospheric and electronic.

The constant, white noise component, is electronic in source. Thus, increas-
ing the signal to noise ratio for this component will require increasing the
data set. In addition, there is a peak at 50 Hz, which is the frequency of
the Chilean mains. A �lter can be applied to the data to remove this. The
low frequency excess is due to atmospheric noise, with the zeroth order the
largest. This is able to be removed by various methods, as discussed in
section 5.

This accords with an examination of the Allen variance undertaken else-
where.6,7 This showed a slope at low ∆t corresponding to white noise, a
peak at large ∆t due to atmospheric e�ects, and an excess between the two
corresponding to the signal.
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Fourier transform of scan X8c51fb X1c (channel 1-X)
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Figure 4: Fourier transform of a channel of data from Mars. The full fre-
quency range is given on top, whilst an expanded view of the low frequency
components is below.

5 Map Making and Noise Removal

5.1 Map Making

In principle, one can use observational data to directly produce constraints
to astronomical parameters of interest. However, with large data sets, such
as those here, this becomes computationally infeasible. Thus, the process of
converting a long time-ordered dataset into a spatial temperature map of the
sky can act as a useful data compression step.5 Indeed, much of the work
done on producing maps of CMB data is applicable here.11,12

The process of map making is that of transforming time-ordered into spatial
data. Each pixel on the map receives a contribution from each data point
with weight wij = K(rij), where rij is the distance from pixel i to data point
j and K is the symmetric smoothing kernel, so equation 2 gives the total
weight at a pixel. The kernel is a �rst order Bessel function multiplied by a
Gaussian to limit ringing.
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Figure 5: The weights of clover leaf (left) and Lissajous (right) patterns.

wi =
∑
j

K (rij) (2)

The total weight is given in equation 2. This can be used to produce maps
of the weight for the two scan patterns. As can be seen in �gure 5, the
smoothing kernel is needed to avoid gaps in the weight map. The Lissajous
pattern produces an more even coverage, with a large weight at the edges,
whilst the clover leaf pattern has a highly concentrated weight at the crossing
point in the centre.

5.2 Noise Removal

5.2.1 Edge Methods

It is typically not a bad assumption that there should be no source signal at
the edges of the map. Thus, one can split the data up into `scans', with each
scan starting at the edge of the map, and ending when it reaches the edge
next. One can then add an o�set and gradient to each scan to force both
edges to be at zero.

Two methods were used, referred to as `edge' and `plane'. The edge method
removed from each scan a gradient and an o�set in time. The plane method
removed the spatial plane that set both edges to zero and was nearest to the
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horizontal. As �gure 6 shows, both methods reduced the standard deviation
of the noise, and ran in negligible additional time.

5.2.2 Basket Weaving

Basket-weaving is a technique to reduce striping image artefacts by o�setting
scan lines to minimise the temperature di�erences at crossing points. Winkel,
Flöer and Kraus developed an e�cient algorithm to solve the basket weaving
problem in the case where the number of data points is much larger than the
number of pixels in the map.9

The scans are divided into two coverages of sizes I and J . Ideally, the number
of crossing points between the two should be maximised. In this instance,
the division was made according to the sign of the gradient of the scan.

Thus, one can calculate the vector of di�erences, Dr = Rr

[
y(1)
]

+ Rr

[
y(2)
]
,

where r is an index running over the M ×N pixels in the map and R
[
y(i)
]
is

the ith coverage mapped onto the sky. Then, neglecting noise and assuming
that each coverage is the sum of the true sky temperature and an o�set term
for each scan (p

(i)
j ), Dr = Rr

[
p(1)
]

+Rr

[
p(2)
]
.

Equation 3 gives the linear equation to be solved with a least squares method,
where w

(i)
r is the total weight of the ith coverage at the rth pixel and wr

(
a(i)
)

is the weight from the a(i)th scan. This can be written as D = AP, where A
is an (M ×N)× (I + J) matrix.

Dr =
1

w
(1)
r

∑
a(1)

p
(1)

a(1)
wr

(
a(1)
)

+
1

w
(2)
r

∑
a(2)

p
(2)

a(2)
wr

(
a(2)
)

(3)

However, there is degeneracy in the solution for P: one could add a constant
o�set, for example. Thus, one can solve for P by minimising the regularised
expression |AP−D|2 +λ2|P|2, which can be done using a simple linear least
squares algorithm.3 The correction map is then given by equation 4.

Cr =

∑I
s=1w

(1)
r Ar,sPs +

∑I+J
s=I+1w

(2)
r |Ar,s|Ps

w
(1)
r + w

(2)
r

(4)

λ is the dampening parameter. Figure 7 shows that there exists a wide range
of values that leads to a consistent value for the standard deviation, with the
lowest value near λ = 0.1, which was therefore chosen.
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Figure 6: A comparison of three noise removal methods, with standard de-
viation and computational time given.

9



Figure 7: E�ect of dampening parameter λ on the standard deviation of the
basket woven output of an observation of blank sky.

The basket weaving method can be extended to treat arbitrary polynomial
o�sets by setting equation 5 as the new equation for Dr, where op is the
maximum polynomial order, ur (vr) the data point number per scan line for
coverage 1 (2), 1 ≤ ur ≤ Ur (1 ≤ vr ≤ Vr).

Dr =

o
(1)
p∑

o=0

p(1)o,r

(
ur
Ur

)o

+

o
(2)
p∑

o=0

p(2)o,r

(
vr
Vr

)o

(5)

Then the same process as for op = 1 can be followed, producing the familiar
matrix equation, but with A and P increased in size (op + 1)-fold. However,
as can be seen in �gure 8, a �rst order polynomial o�set produces an inferior
reduction in noise compared with a zeroth order o�set, whilst increasing the
computational requirements. Additionally, using a higher order polynomial
will start to remove signal. Thus, op = 1 was used.

The method was tested using two images of the Orion Molecular Cloud
(OMC) taken several months apart. As can be seen in �gure 9, whilst they
have the same form, the Lissajous pattern has its peak at a lower temper-
ature. However, this is not unsurprising � the circular pattern has a higher
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Figure 8: E�ect of increasing polynomial order on the standard deviation
and computational time for the basket woven output of an observation of
blank sky.

weight at the centre, so will have a higher signal to noise ratio there. In
addition, the Lissajous observation was taken with an antenna that was not
tracking very well.

5.3 Discussion

5.3.1 E�cacy

As can be seen in �gure 6, basket weaving produces the largest amount of
noise reduction, lowering the standard deviation by 60%. The computational
time is longer than for the other methods, but at 12.8s, would be very fast
on good modern hardware.1

1All computation for this project was done using a computer with a 1.5 GHz Intel

Celeron CPU running Ubuntu 14.10
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Figure 9: Two images of the Orion Molecular Cloud (OMC), both basket
woven with the same parameters. X11a is a clover leaf pattern, whilst DA47
is a Lissajous pattern.

5.3.2 Future Work

There is certainly room for optimisation of the algorithms used. For example,
the matrix A is approximately 90% sparse. Using a package designed for
sparse matrices could reduce the memory and processor requirements.

5.3.3 Inference methods

Ideally, the map-making process should minimise the loss of information. It
has been proved that inference methods can be chosen to lose no informa-
tion.5 One such is the method of Janssen & Gulkis,11 which can be adapted
for fast-scanning. Equation 6 gives a model for the measured temperature,
Tm, at time ti. Tt(xj) is the true sky temperature, whilst Ai,j is the map-
ping between the two if there were no noise. Inference requires a model of
the noise as Q functions of time, fq(ti), with free parameters Eq, and Ni is
random noise.

Tm(ti) =
∑
j

Tt(xj)Ai,j +
∑
q

Eqfq(ti) +Ni (6)

This can then be written in the form of a matrix equation to be solved by
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regularised least squares minimisation as in section 5.2.2. However, in this
case, the matrix A will be of size Ndata× (Npixels +Q), which is 102�103 times
larger than the matrix A used in basket weaving. Thus, this method will be
substantially more computationally expensive. In addition, one would need
a model for the atmospheric noise. However, inference is the most obvious
next step in atmospheric noise removal from basket weaving, so merits further
investigation.

6 Conclusions

Data from fast-scanning observations of multiple sources by ALMA have been
analysed. The data was successfully converted into a brightness temperature
format. The noise was analysed in the fourier domain, revealing a substantial
atmospheric component.

Three methods of removing the atmospheric noise were investigated. Of
these, basket weaving produced the most noise reduction (60%), whilst re-
maining computationally inexpensive.

There is scope for further work, re�ning the current basket weaving technique.
In addition, inference may be a superior solution if computational speed is
not a priority.
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